

LA-1 RELOCATED: TWO DECADES AND STILL GOING

Jesse G Rauser, PE
Assistant Geotechnical Engineer Administrator
LADOTD
STGEC 2025-09-17

1

PRESENTATION OUTLINE

- Project Background
 - Geotechnical Investigations
- Embankments & Fill
 - Embankment Settlement
 - Cracked Piles and Haul Road
- Pile Design
 - Test Pile Program
 - CPT Direct Design Methods
 - Other Design Challenges
- Pile Monitoring & Acceptance
 - Pile Setup & Dynamic Monitoring
 - Pile Splices

PROJECT BACKGROUND

PROJECT SUMMARY

- 19.3 miles of elevated highway between Golden Meadow & Port Fourchon
- Supports (per LA-1 Coalition):
 - 16% of nation's domestic crude oil production
 - 4% of nation's natural gas production
 - 20% of nation's seafood production
 - Hurricane evacuation for Grand Isle residents
 & offshore workers
- Susceptible to storm surge flooding

Project Location: Lafourche Parish, LA

CONSTRUCTION TIMELINE

- Phase 1: \$338.5m (completed 2011)
 - Pre-construction (before 2006): \$43.3m
 - Segment B (2006-2009): \$141.4m
 - Segment C (2006-2009): \$21.1m
 - Segment A (2007-2011): \$132.7m
- Phase 2: \$479.5m (60% complete)
 - Segment E (2018-2020): \$13.4m
 - Segments A-D (2022-now): \$466.1m

Project Alignment & Phasing

GEOTECHNICAL INVESTIGATION

- 169 Borings / 562 CPTs made from truck rig, twin-engine airboats, & 4engine airboats
- Phase 1B/1C
 - 100 soil borings, 155 CPTs
- Phase 1A
 - 19 CPTs
- Phase 2
 - 69 soil borings, 388 CPTs

EXISTING DATA: SOIL BORINGS

Classification from CPT Soundings Across the Phase 2 Alignment

EMBANKMENTS & FILL

EMBANKMENT SETTLEMENT

- Embankment needed to transition existing atgrade LA-1 to pile-supported structure
- Design estimates:
 - Needed 4-5' of elevation change
 - Settlement equal to fill added (γ=120 pcf)
- Mitigate with surcharge, wick drains, & lightweight aggregate
- Vibrating wire settlement cells were used to monitor settlement
- Used Hyperbolic Projection to estimate δ @
 T₁₀₀
 - What happened here?

HAUL ROAD CONSTRUCTION

- A 60-foot wide limestone haul road was constructed in the marsh
 - Limestone dumped until stable, volume unknown
 - Near-surface soils are very soft clays with a few sand/silt layers
- Piles driven immediately adjacent to haul road
 - Relatively easy driving
 - PDA integrity: OK
 - Pile heads began moving up to 7" away from haul road after initial surveys

Sblid BloRingolLboccB + ib819

PULSE-ECHO TEST RESULTS

- Pulse-Echo testing performed on approximately 70 piles
- In some cases, damage was detected just above dense layers
- It is possible that the haul road created enough lateral force to bend the piles about the denser sand/silt layers
- Additional piles were driven to replace the damaged piles

Pulse-Echo Test Records for 3 Different Piles (Blue = Denser Layer Based on Driving Resistance)

PILE DESIGN

TEST PILE PROGRAM

- Total tested to date: 24
 - 16" PPC: 1
 - 18" PPC: 1
 - 24" PPC: 12
 - 30" PPC: 7
 - 54" cylinder: 2
 - 30" pipe: 1
- Test Types:
 - Static: 20
 - Statnamic: 4
 - Lateral: 1

Reading Dial Gauges During Static Test

CPT DIRECT DESIGNEVALUATION

Direct design methods:

- deRuiter & Beringen
- LCPC
- Schmertmann
- Average

Methodology:

- Plot CPT nominal resistance curve
- Plot Test Pile driving resistance
- Verify layering is similar/CPT is representative
- Compare estimate to load test result as a percentage

Result For Dile It Designation CPT 1A-21

PILE DESIGN CHALLENGES

- End-on construction, timing is critical
- Deep sand stratum
 - Pile refusal within a few feet of penetration
 - Cutoffs limited to 3' due to structural design
- Profile mainly N.C. clay
 - However, many piles do not gain required nominal resistance in side friction only
- Therefore, very narrow window for achieving resistance + drivability
- Compounded by varying sand depths

PILE DESIGN SUMMARY

- Most of project is composed of spliced PPC piles
- Most driving using D46 hammer
 - Some air hammer use (< 5%)
- Phase 1A and Phase 2 had multiple alternates
 - We designed significantly more than this!
- Monitor Piles had initial drive & restrike, plus sometimes monitoring of bottom portion
 - Actual PDA events were probably 2x greater

Phase 1 & 2 Pile Summary

Phase	Bents	Tested w/PDA	Length Driven (miles)
1B	269	137	47
1A	436	435	45
2E	38	33	4
2A-C *	524	549	104
	1229	1154	201

^{*} Totals, currently project is about 60% complete

PILE MONITORING & ACCEPTANCE

DYNAMIC TESTING & PILE SETUP

- Piles have very little resistance at EOD
 - Setup projections are necessary to accept piles
- Compare best-fit pile setup resistance (CWtotal) to static load test result
 - $Q_{predicted} = 436 \text{ tons, } Q_{static} = 431 \text{ tons}$
 - $\overline{Q_{\text{predicted}} / Q_{\text{static}}} = 101\%$
 - Repeat Q_{predicted} vs Q_{measured} for all 24 TPs
 - Generally best-fit CAPWAP curve predicts static result within 90%
 - Does not tend to overpredict pile resistance
- Should set-up rates (Skov-Denver 'A') be consistent?
 - Clay: A_{avg}: 0.31, StDev: 0.1
 - Sand: A_{ava}: 0.21, StDev: 0.4

PHASE 2B BY LAYER: BTA/PILE INTEGRITY

OBSERVATIONS

BTA:

- Lower than average on Phase 1A
- These are larger piles
- This is a different type of splice

Can't look at BTA in a vacuum:

- Need to understand the splice's "signature"
- Is splice deteriorating throughout drive?
- No
- Tension seems to impact BTA here:
- Inconsistent in easy driving
- Increases (better) in sand layer
- Decreases after penetrating sand, but approaches a consistent value for remainder of drive

PROJECT TAKEAWAYS

LA-1 RELOCATED: PROJECT TAKEAWAYS

Embankments

- Seasonal tidal changes impacted settlement monitoring
- Needed more than a year of data to identify trends
- Tidal Influence on Embankment Settlement in Coastal LA (Tsai et. al., 2010)
- Lateral squeeze appears to have damaged piles

CPT Direct Design

- Direct methods are viable \rightarrow all of Phase 2 designed using direct methods
- deRuiter & Beringen chosen for consistency + conservatism
- Update the Pile Design by CPT Software to Incorporate Newly Developed Pile-CPT Methods and Other Design Features (Abu-Farsakh et. al., 2023)

LA-1 RELOCATED: PROJECT TAKEAWAYS

- Pile Setup Rate (Skov-Denver 'A')
 - Consistent in clays ($A_{avg} = 0.31$) if pile is mobilized during all restrikes
 - Does not appear to be highly dependent upon pile size
 - Dynamic monitoring best-fit setup predicts static resistance to within \sim 90%, does not overpredict
 - Field Instrumentation & Testing to Study Set-Up Phenomenon of Piles Driven into Louisiana Clayey Soils, LTRC Project 11-2GT (Abu-Farsakh et. al, 2015)

Pile Splices

- Different behavior between Phases 1 and 2
- Use PDA data to look at aggregate behavior over many piles
- STGEC 2024: Concrete Pile Splices (Sternberg & Rauser)

LA-1 RELOCATED: PROJECT TAKEAWAYS

Pile Design & Acceptance:

- Even with large number of explorations, very narrow margin for error
- Acceptance is daily activity requires rapid access to boring/CPT data, pile driving records, hammer performance, and CAPWAP records

Project Scale:

- 169 Borings, 562 CPTs
- 1229 Bents, over 200 miles of pile driven (by end of project)
- 24 pile load tests, 1154 piles tested with PDA
- Going forward, can we develop standards, databases, and tools to leverage all of the data?